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Estimation and Moment Recursion Relations for 
Multimodal Distributions of the Exponential Family 

LOREN COBB, PETER KOPPSTEIN, and NENG HSIN CHEN 
 

Abstract:  Multimodal generalizations of the normal, gamma, 
inverse gamma, and beta distributions are introduced within a 
unified framework. These multimodal distributions, belonging 
to the exponential family, require fewer parameters than corre-
sponding mixture densities and have unique maximum likeli-
hood estimators. Simple moment recursion relations, which 
make maximum likelihood estimation feasible, also yield easily 
computed estimators that themselves are shown to be consistent 
and asymptotically normal. Lastly, a statistic for bimodality, 
based on Cardan’s discriminant for a cubic shape polynomial, is 
introduced. 

Key Words:  Bimodality; Catastrophe theory; Parameter estima-
tion; Pearson system; Polynomial exponential distributions; 
Shape polynomial. 

1.  INTRODUCTION 

The model generally used in the analysis of multimodal den-
sities is a mixture of normals, or possibly of other unimodal 
densities. There is a class of alternatives, however, that may be 
appropriate when a mixture assumption is not required or justi-
fied. Four major types of nonmixture multimodal probability 
densities within this class are presented here, each of which can 
arise as the stationary probability density function of a nonlinear 
diffusion process. Many common unimodal families (e.g. nor-

mal, gamma, beta) are represented as special cases of these 
types. This class of probability densities is expressed in the 
following general form on the open interval (a,b): 

  fk(x) = ξ(β )exp g(s)
v(s)

ds
a

x

∫
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

, (1.1) 

where   g(x) = β0 + β1x +… + βk x
k , k > 0, and the function v(x) 

has one of the following principal forms (other forms are, of 
course, possible): 

 Type N: v(x) = 1, –∞ < x < ∞. 

 Type G: v(x) = x, 0 < x < ∞. 

 Type I: v(x) = x2, 0 < x < ∞. 

 Type B: v(x) = x(1–x), 0 < x < 1. 

The open interval on which v is positive is (a,b). The normali-
zation function ξ:ℜk+1 →ℜ  is chosen so that the integral of fk 
over (a,b) is unity. In this article the terms mode and antimode 
refer, respectively, to local maxima and minima of the density 
function at which the density's derivative vanishes. Modes are 
thus distinguished from poles and nonmodal local maxima on 
the boundaries of the domain of the density function. 
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The probability density functions described by (1.1) are a 
generalization of the Pearson system for classifying densities. 
On differentiation with respect to x, (1.1) yields 

   d
dx
log f (x) = −

g(x)
v(x)

  (1.2) 

which contains Pearson’s differential equation as a special case. 
In the Pearson system (Ord 1972), the degree k of the polyno-
mial g is one and the degree of v is at most two. In this article 
we are concerned with the multimodal forms that appear when 
the degree of g exceeds one. The polynomial g will be called the 
shape polynomial for the density f.  

 

Figure 1.  A sequence of Type N densities with cubic 
shape polynomial g(x) = 10x3 – βx – 0.3, for various 
values of β. 

 

The capacity for multimodality in the class described by (1.1) is 
illustrated in Figure 1, which shows a sequence of densities of 
Type N, with g(x) = 10x3 – βx – 0.1, for various values of β. 

The maximum number of modes possible in a given family is 
determined by the degree of its shape polynomial, k. From (1.2) 
it may be seen that the critical points of the density (i.e. those 
points x such that f’(x) = 0) are exactly the roots of g(x). 
Whether such a point is a mode or an antimode (a relative mini-
mum) depends on the sign of g”(x) – {g’(x)}2. At the roots of 
v(x) the density either has a zero (f(x)→0) or a pole (f(x)→ ∞), 
depending on the coefficients of g. The only exceptions to this 
occur at points x that are roots of both g(x) and v(x): these are 
degenerate boundary points for the density (Cobb 1981b). 

The generalized family of Pearson distributions may also be 
characterized in terms of nonlinear diffusion processes (see, 
e.g., Wong 1964). Let 2µ(x) = g(x) – v’(x), and σ2(x) = v(x). 
Then f(x) is the stationary density of a stochastic process xt that 
is governed by the stochastic differential equation (Soong 1973) 

  dxt  =  –µ(xt)dt + σ(xt)dwt, (1.3) 

where wt is a standard Wiener process. Consider the determinis-
tic version of this system, namely dx/dt = –µ(x). It has equili-
bria at the solutions of g(x) – v’(x) = 0. In the Type N cases 
(v(x) = 1) these equilibria are exactly the modes and antimodes 
of the corresponding probability density function. In the other 
types the modes and antimodes are shifted away from the 
equilibria of the deterministic system (Cobb and Watson 1980). 
In these four cases, modes correspond to attracting equilibria, 
while antimodes correspond to repelling equilibria. Thus 
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multimodality can be the result of multiple equilibria in a 
stochastic dynamical system, rather than of heterogeneous 
populations as in the usual interpretation of mixture densities. 
Note, however, that bimodal stationary densities, for example, 
can arise when there is but one corresponding attracting 
equilibrium, as discussed at the end of the following section. 

The estimation problem for these multimodal densities can be 
stated this way: given the type and degree of the density, esti-
mate the coefficient vector β  = (β0, β1, ..., βk). If it is assumed 
that the underlying model is the nonlinear stochastic system 
(1.3), as, for example, in elementary catastrophe theory (Poston 
and Stewart 1978), then these estimates lead indirectly to an 
identification of the deterministic component of the system. 

2.  THE PRINCIPAL TYPES 

Each distinct specification of the function v in (1.1) leads to a 
distinct family of distributions, each family being indexed by 
the degree of the shape polynomial g. To simplify the notation, 
let Nk refer to the density of the Type N family of degree k for 
permissible k, and similarly for Gk, Ik, and Bk. 

The Nk densities have as their principal member the normal 
density, N1. The bimodal density N3 (Figure 1) was first dis-
cussed by Fisher (1922) but has received only occasional atten-
tion since that time (e.g. O’Toole 1933, Aroian 1948, Matz 
1978). The relevance of N3 and indeed G3 and I3 to statistical 
analyses of the cusp model (Cobb 1978, 1981a,b, Cobb and 
Watson 1980, Koppstein 1980) suggests that renewed attention 

be paid to the generalized Pearson family. The general form for 
an Nk density is 

  Nk(x)  =  ξ exp[θ1x  + θ2x2 +  ... + θk+1xk+1], (2.1) 
where θj = –βj-1 / j.  Nk has finite moments of all orders if k is 
odd and θk+1 < 0. 

The Gk densities have as their principal member the gamma 
density, G1, and include the exponential and Rayleigh densities. 
The general form for the Gk density is 

  Gk(x)  =  ξxα-1exp[θ1x  + θ2x2 +  ... + θkx
k], (2.2) 

where α = 1– β0 and θj = –βj / j. Gk has moments of all orders 
if α > 0 and θk < 0. 

The Bk densities have as their principal member the beta 
density, B1. The B3 density has been used in population genet-
ics (e.g., Ludwig 1974) to describe the frequency of a gene with 
heterozygotic advantage, such as the gene for sickle-cell ane-
mia. The B3 density is particularly interesting because it can 
adopt the W shape shown in Figure 2, which exhibits a central 
mode surrounded by two antimodes and two poles. The general 
form for the Bk density is 

Bk(x)  =  ξxα-1(1–x)γ–1exp[θ1x  + θ2x2 +  ... + θk–1xk–1], (2.3) 

α = 1– β0, γ = 1 + βi
i= 0

k

∑ , and θj = βi / j
i= j+1

k

∑ , for j = 1, ..., k–1. 

Bk has finite moments of all orders if α > 0 and γ > 0. 



Estimation and Moment Recursion Relations  Page 4 of 11 

Cobb, Koppstein, and Chen   Revision of 15 August 2010 

 
Figure 2. A Type B density with cubic shape polyno-
mial chosen so that the density has two poles, two 
antimodes, and one mode. The shape polynomial is 
g(x) = –14(x – 0.1)(x – 0.5)(x – 0.9). 

The four classes of distributions identified above may together 
be referred to as the multimodal Pearson system: the restriction 
that v be a polynomial of degree at most two is preserved, but 
the degree of the polynomial g is arbitrary. Further generali-
zations are, of course, possible. We mention in particular the 
closely related class of distributions on (0,1) defined as above 
but with v(x) = x2(1–x)2. This class of distributions stands in 
relation to Type B as Type I stands to Type G, and thus should 
perhaps be included in our enumeration of principal types; 
certainly the discussion that follows applies equally to this class 

as well. We shall, however, simply remark here that this class 
arises in the study of logistic growth and is noteworthy because 
the stationary densities of the related stochastic differential 
equations may exhibit bimodality even when the deterministic 
dynamic has only one attractor (Lefever 1981). 

Finally, we observe that not all distributions defined by (1.1) 
have finite moments of all orders. For example, g(x) = (1+r)x  
and  v(x) = r + x2  yields Student’s t density with r degrees of 
freedom. 

3. ESTIMATION 

3.1 Maximum Likelihood Estimation 

Since the densities Nk, Gk, Ik, and Bk belong to the well-known 
exponential family, we shall be brief. If (X1, ..., Xn) is a random 
sample of a random variable with one of these densities, then 
the minimal sufficient statistic for β  is 

Type N: (ΣX, ΣX2, ..., ΣXk+1). 

Type G: (Σln(X), ΣX, ..., ΣXk). 

Type I:  (ΣX–1, Σln(X), ΣX, ..., ΣXk–1). 

Type B: (Σln(X), Σln(1–X), ΣX, ..., ΣXk–1). 

It is not difficult to show that the Hessian of the negative log-
likelihood function is a positive definite matrix. Thus the unique 
maximum likelihood estimators (MLEs) can in principle be 
readily computed. The numerical integrations involved, how-
ever, can be tedious. Nevertheless, as O’Toole’s paper (1933b) 
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suggests, the simplest quadrature methods may be expected to 
yield good results. Further, as we show in Section 3.2, simple 
moment recursions formulas enable a trivial calculation of 
consistent estimators. These recursion formulas also enable 
straightforward calculation of the Hessian once the numerical 
integrations required for calculation of the gradient vector of the 
log-likelihood function have been performed. For N3, for 
example, only three integrations are required to calculate the 
gradient (and Hessian). 

3.2 Consistent Estimators from Moment 
Recursion Relations 

Pearson’s method of parameter estimation depends on the 
existence of a linear system of equations relating the k+1 
parameters to the first k+1 moments of the density. If such a 
system can be found, then sample moment estimates are 
inserted and the system is solved for the parameters. The direct 
application of this method to the multimodal exponential 
families discussed here fails because of the lack of a general 
formula relating the first k+1 moments to the parameters. How-
ever, a formula relating 2k moments to the parameters can be 
found, based on the following theorem. 

Theorem 1. Let X be a random variable with probability density 
function f of Type N, G, I, or B, with k > 0. For any j ≥ 0, 

E{ Xjg(X) }  =  E{ [Xjv(X)]’ }, 

where (’) denotes differentiation. 

Proof. Use (1.2) and integration by parts. Let the domain of f be 
denoted by (a,b). Then 

  E{ Xjg(X) } =  x jg(x) f (x)dx
a

b

∫  

   =  x j –v(x) f ’(x)
f (x)

⎧ 
⎨ 
⎪ 
⎩ ⎪ 

⎫ 
⎬ 
⎪ 
⎭ ⎪ f (x)dx

a

b

∫  

   =  – x jv(x) f ’(x)dx
a

b

∫ . 

Now integrate this expression by parts: 

 – x jv(x) f ’(x)dx
a

b

∫   =  x jv(x) f (x) a
b +  {x jv(x)}’ f (x)dx

a

b

∫ . 

Note that x jv(x)f(x) → 0 as x → a and as x → b for each of the 
principal densities (2.1–2.4). 

Remark. This theorem applies to any density in the class (1.1) 
for which the first term in the integration by parts vanishes, 
even if not all moments are finite. In the case of Student’s t, for 
example, it implies that (r–j–1)µj+1 = rjµj-1, where r denotes the 
degrees of freedom. 

The moment recursion relations and the estimators derivable 
from them are direct consequences of Theorem 1: 

Corollary 1.  For each of the principal types of densities in (1.1) 
there is a recursion relation for the noncentral moments µi, for 
every integer m ≥ 0: 
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Type Nk: βiµi+m
i= 0

k

∑ =  mµm-1. (3.1) 

Type Gk: βiµi+m
i= 0

k

∑ =  (m+1)µm. (3.2) 

Type Ik: βiµi+m
i= 0

k

∑ =  (m+2)µm+1. (3.3) 

Type Bk: βiµi+m
i= 0

k

∑ =  (m+1)µm – (m+2)µm+1. (3.4) 

These moment relations have long been known in the special 
case k = 1. 

In 1948 Aroian used the recursion formula for N3 to obtain 
parameter estimates for the quartic exponential distribution. The 
following corollary generalizes his procedure. 

Corollary 2.  Let M be the (k+1) × (k+1) matrix of moments for 
the random variable X: [M]ij  =  µi+j–2. Then Mβ = α, where αj 
= E{ [Xj–1v(X)]’ }. 

This corollary provides a relationship between moments and 
parameters that is useful for estimation. Simply use ˆ β = ˆ M −1 ˆ α , 
where the entries of ˆ M  and ˆ α  are the ordinary sample 
moments. The entries of ˆ α  depend on the type of density: in the 
case of Type N, for example, α j = ( j −1)µ j−2 . The following 
lemma is needed: 

Lemma 1.  Let X1, ..., Xn be independent and identically distri-

buted random variables. Let M[ ]ij =
1
n

Xk
i+ j – 2

k =1

n∑ .  Then ˆ M  is 

positive definite with probability one. 

Proof.  Let γ = (γ0, ..., γk) be an arbitrary nonzero vector. Note 

that n ′ γ ˆ M γ = (γ 0 +γ 1Xi + ... + γ k Xi
k )2

i =1

n

∑ . But, since Xi has a 

continuous density, we have Prob{ γ0 + ... + γkX
 k
 i   = 0 }  =  0  

for  i = 1, ..., n. The result follows immediately. 

The bias and relative efficiency of the moment estimator 

  
 
β =

 
M −1  α  are not as yet known, but it can be shown that   

 
β  is 

consistent and asymptotically normal. 

Theorem 2.  The estimator   
 
β =

 
M −1  α  is consistent, and 

  n(
 
β − β )  is asymptotically multivariate normal with covari-

ance matrix V, such that 

  [MVM]ij = E{(  α i − [
 
M β]i)(

 
α j − [

 
M β ] j)} . 

Proof.  Consistency: it has already been established that   
 
M is 

invertible (w.p.1). The function that takes an invertible matrix 
into its inverse is differentiable with respect to each of its 
entries, and ˆ M p⎯ → ⎯ M , so   

 
M −1 p⎯ → ⎯ M−1 . Furthermore, 

  
 
α p⎯ → ⎯ α , therefore   

 
β p⎯ → ⎯ β . 

Normality: First observe that we have n( ˆ M − M) =Op (1)  and 
( ˆ β − β) = op(1) . Now consider the identity 
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nM( ˆ β − β ) = n( ˆ α − ˆ M β ) − n( ˆ M − M)( ˆ β − β ) . 

Each entry of the second term on the right side is Op’(1)op(1) = 
op(1), where here (’) denotes matrix transposition. Thus 

n ( ˆ β − β ) − M−1( ˆ α − ˆ M β)[ ] p⎯ → ⎯ 0 . 

The vector nM−1( ˆ α − ˆ M β)  can be written as h(Xi ) / n
i=1

n∑ , 
where h(x) is a vector of polynomials in x. Note that E[h(X)] = 
0. Let [V]ij = E[hI(X)hj(X)]. Then n( ˆ β − β )  is asymptotically 
N(0,V), by the multivariate Central Limit Theorem. 

The (k+1)×(k+1) asymptotic covariance matrix V of   n(
 
β − β )  

can be written in the form V = M−1BG ′ B M−1 , where G is the 
(2k)×(2k) covariance matrix with [G]ij = cov{X

i ,X j} for i, j = 
1, …, 2k, and B is a (k+1)×(2k) matrix that depends on the type 
and order of the density. The pattern of the matrix B for each of 
the principal forms, Nk, Gk, Ik, and Bk, can be seen from the 
form of B for k = 3, as follows: 

N3: B =

β1 β2 β3 0 0 0
β0 β1 β2 β3 0 0
−2 β0 β1 β2 β3 0
0 −3 β0 β1 β2 β3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

G3: B =

β1 β2 β3 0 0 0
β0 − 2 β1 β2 β3 0 0
0 β0 − 3 β1 β2 β3 0
0 0 β0 − 4 β1 β2 β3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

I3: B =

β1 − 2 β2 β3 0 0 0
β0 β1 − 3 β2 β3 0 0
0 β0 β1 − 4 β2 β3 0
0 0 β0 β1 − 5 β2 β3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

B3: B =

β1 + 2 β2 β3 0 0 0
β0 − 2 β1 + 3 β2 β3 0 0
0 β0 − 3 β1 + 4 β2 β3 0
0 0 β0 − 4 β1 + 5 β2 β3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

It is not difficult to show that V has full rank for each of the 
principal types. 

3.3 Approximation Theory 

The moment estimators derived in the previous section can be 
given an additional justification within the framework of 
approximation theory. In this context the task is to find a 
polynomial   

 g (x)  that comes as close as possible to an unknown 
shape function, g(x) = –v(x)f’(x)/f(x), as defined in (1.2). We 
show that the estimator derived in the previous section provides 
a polynomial of specified degree that is closest to g in a natural 
sense (Cheney, 1966). 

Consider the space L2 X( )  of functions h:ℜ→ ℜ  for which 
E{h2(X)} < ∞, where X is a random variable with density f in the 
class (1.1). The norm for L2 X( )  is h = E{h2 (X)} . The 
approximation problem is to find a polynomial 
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Pk(x) = α0 + … + αkxk 

that is as close as possible to g in the sense of the L2 norm. 

Let Q α( ) = α0 + ...+α k X
k − g X( ) 2 . This quadratic criterion 

has a global minimum at the point, say β, at which the gradient 
of Q is the zero vector: 

∇Q = 0

⇒ E ∂
∂β j

β0 + ...+ βk X
k − g X( )( )2{ } = 0,  j = 0,1,...,k

⇒ E β0X
j + ...+ βk X

j+ k{ } = E X jg X( ){ },  j = 0,1,...,k.

 

An application of Theorem 1 to the right side produces 

βi E{Xi+ j} = E{ [X jv(X)]
i=0

k

∑ ’ } ,  j = 0,1, …, k, 

which are exactly the same as the moment recursion relations 
(3.1–3.4) from which the estimators were derived. Thus, given 
k and a specified form for v(x), the estimated   

 g (x)  = β0 + … + 
βkxk is the closest polynomial of degree k to the unknown g in 
the function space L2 X( ) . 

It is instructive to observe the difference in assumptions be-
tween the moment estimators and estimates from approximation 
theory. To obtain moment estimators for g it is necessary to 
assume that g is a polynomial, whereas to apply approximation 
theory it is only necessary to assume that g ∈L2 X( ) . 

4. BIMODAL DENSITIES 

Among all the distributions of the four principal types as 
described by (1.1), the relevant ones for bimodal data are those 
of order three, the minimum order necessary for bimodality. 
Obtaining consistent estimates for the four coefficients is as 
easy as solving four simultaneous linear equations, as provided 
by Corollary 2. 

 
Figure 3. A comparison of the N3 and G3 densities as 
fitted to data for annual crude birth rates of 59 coun-
tries (Weinstein 1966). 

However, as Figure 3 suggests, the Aroian estimates for the N3 
density for small sample size may be noticeably inferior to the 
maximum likelihood estimates. Further, as suggested by the 
characterization given in Section 3.3, the Aroian estimates may 
be quite misleading if the actual distribution in fact has more 
than two modes. Figure 3 displays the histogram for the crude 
birth rates of 59 countries (Weinstein 1976, p. 88). Parameter 
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estimates are given in Table 1. The density N3 is also contrasted 
with G3 in Figure 3, since birth rates are always non-negative. 

Table 1. Parameter Estimation for Fitting the 
Quartic Exponential Distribution N3 to the Data 

Displayed in Figure 3 

 MLE S.E. Aroian Estimates  
λ 31.65 0.46 32.47 
σ 7.83 0.37 7.42 
α –0.007 0.078 –0.64 
β 3.28 0.30 3.78 
δ –1.3  –1.9 
Note: S.E. signifies estimated standard error of the MLE and δ denotes 
Cardanʼs Discriminant. The standard errors were estimated using the Hessian 
matrix of the log likelihood function. The parameters are as defined in (4.1). 

Whether an exponential family in the class (1.1) is multimodal 
depends on the number of roots possessed by the density’s 
shape polynomial. If the shape polynomial is cubic, then it is 
possible to construct a statistic that is negative if there are three 
distinct roots and positive if there is only one real root. This 
construction was first described by the 16th century mathema-
tician Geronimo Cardan, for whom it is named. Let g(x) = b0 + 
b1x + b2x2 + b3x3, and let λ = –b2/(3b3). Then 

δ =
(g(λ ))2

4
+
(b1 + b2λ )3

27b3
 

is Cardan’s Discriminant, which will serve as our statistic for 
bimodality. In the case of the N3 density this statistic is particu-
larly useful. If we let 

 σ = 1 b34  , 

 α = −σg(λ) , and 

 β = −(b1 + b2λ)σ
2 , 

then δ = α 2( )2 − β 3( )3 , 

and the density can be parametrized as 

N3(x) = ξ exp[αz + βz2 2 − z4 4] ,  where z = (x − λ ) σ . (4.1) 

Thus λ is a location parameter and σ is a scale parameter, and 
the modes and antimodes of the density are at the solutions to 

α + βz – z3 = 0. 

If δ < 0 the density is bimodal, and if δ ≥ 0 the density is 
unimodal. The parameters α (asymmetry) and β (bifurcation) 
are invariant with respect to changes in location and scale, as is 
δ, and they have the following approximate interpretations: 

Asymmetry; if δ ≥ 0 then α is a measure of skewness, while if 
δ < 0 then α indicates the relative height of the two modes. 

Bifurcation: if δ ≥ 0 then β is a measure of kurtosis, while if 
δ < 0 then β indicates the relative separation of the two modes. 

The relationship between α and β and the modes and antimodes 
of the N3 family is shown in Figure 4. 
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Figure 4. The location of the roots of a cubic shape polynomial, 
g(x) = x3 – βx – α, graphed as a funciton of the parameters α 
and β. These roots are the modes and antimodes of the 
corresponding N3 density. A trajectory parallel to the β-axis is 
shown together with its image in the surface above. The 
densities of Figure 1 follow this trajectory. 

In the cases G3, I3, and B3, Cardan’s discriminant is not quite as 
useful. This is because the interpretation depends on how many 
of the real roots are actually located within the domain of the 
density. In addition, even when B3 has three distinct roots 
within its domain it may still be unimodal: this possibility is 
illustrated in Figure 2. 

An approximate standard error for δ can be calculated by the 
usual methods, based on the covariance matrix of the estimators 
for the coefficients of the shape polynomial. This covariance 
matrix depends on the type of the density and on which method 

of estimation was used. In each case a test for bimodality can be 
constructed. 

4. CONCLUSIONS 

There is a single moment relationship, expressed in Theorem 1, 
that is valid for a very large class of probability density func-
tions. This class is a generalization of the Pearson system, and it 
includes many types of multimodal densities in the exponential 
family. Consistent estimates may be obtained simply by solving 
a linear system of moment recursion relations. If maximum 
likelihood is to be used, then these estimates may serve as the 
initial vector for the Newton-Raphson iterative procedure. 

Except when the mixture assumption is justified for theoretical 
reasons, the multimodal densities described above are prefer-
able to the classs of mixture densities in several respects. The 
typical mixture density with j modes requires 3j–1 parameters, 
whereas the equivalent multimodal exponential family requires 
only 2j parameters, for which the maximum likelihood method 
yields unique estimates. In the case j = 2, Cardan’s discriminant 
can be used as an indicator of bimodality. 
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